

ivo

AI and tumor molecular profiling

José Antonio López-Guerrero PhD Laboratory of Molecular Biology Fundación Instituto Valenciano de Oncología

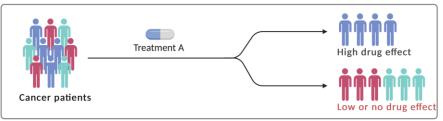
OECI 2022 ONCOLOGY DAYS

Valencia 16th June 2022

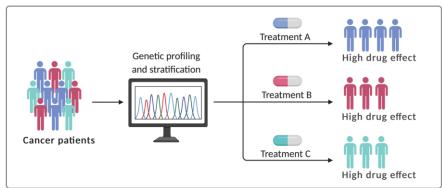
Outline

- Precision medicine
- MPD[©]
- SCARFACE
- Conclusions

.....


MPD[©]

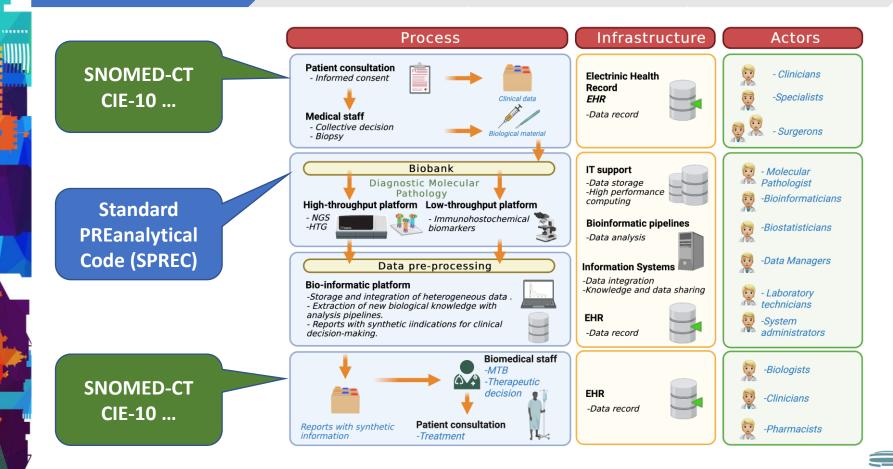
SCARFACE


CONCLUSIONS

- Precision medicine constitutes an approach for disease treatment and prevention that takes into account individual genetic variability, environment, and lifestyle for each person.
- This approach will allow to predict more accurately which treatment and prevention strategies for a particular disease will work in which groups of people.

Conventional therapy

Precision cancer therapy


1 =

MPD[©]

SCARFACE

CONCLUSIONS

VO

Adapted from Servant N, et al. Front Genet. 2014 May 30;5:152

• IVO and HTG have signed an agreement of collaboration for the development of diagnostic molecular tools.

•*Mamapred© (MPD©)* has been developed by Fundación Instituto Valenciano de Oncología, Fundación Pública Andaluza Progreso y Salud, and Consorcio Centro de Investigación Biomédica en Red, M.P.

Fundación Progreso y Salud CONSEJERÍA DE SALUD

© 2021 López-Guerrero, JA; Fernández-Serra, A; Ramírez-Calvo, M; Loucera, C; Peña, M; Dopazo, J all rights reserved.

MPD[©]

Aim of MPD

To develop and validate a molecular test to determine the risk of relapse in patients with early-stage HR+/HER2- breast cancer, by defining a relapse score from data generated with the HTG EdgeSeq Oncology Biomarker Panel from breast cancer cases previously analyzed with the recurrence score of the OncotypeDx[®] and MammaPrint[®] platforms.

AGENDIA MAMMAPRINT+BLUEPRINT

.....

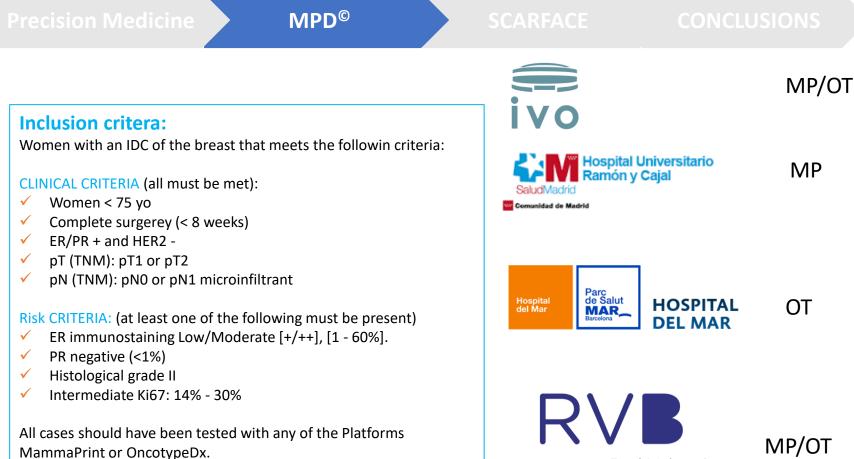
MINDACT trial

In conclusion, in a large group of patients at high clinical risk for breast-cancer recurrence, the addition of the 70-gene signature to the traditional clinical and pathological factors provided valuable information for considering which patients might benefit from adjuvant chemotherapy. We found that chemotherapy with its attendant toxic effects could be avoided in these patients at high clinical risk but low genomic risk at a cost of a risk of distant metastasis at 5 years that is 1.5 percentage points higher. Follow-up is ongoing to determine whether these conclusions remain valid for longer-term outcome.

ONLY PATIENTS CLASSIFIED AS HIGH RISK, INDEPENDENTLY OF THE CLINICAL RISK WOULD BE BENEFITED BY CHEMOTHERAPY

TAILORx trial

CONCLUSIONS


Adjuvant endocrine therapy and chemoendocrine therapy had similar efficacy in women with hormone-receptor-positive, HER2-negative, axillary node-negative breast cancer who had a midrange 21-gene recurrence score, although some benefit of chemotherapy was found in some women 50 years of age or younger. (Funded by the National Cancer Institute and others; TAILORx ClinicalTrials.gov number, NCT00310180.)

ONLY PATIENTS CLASSIFIED AS HIGH RISK ARE BENEFITED BY CHEMOTHERAPY

WOMEN 50 YEARS OF AGE OR YOUNGER CLASSIFIED AS INTERMEDIATE-RISK MIGHT BENEFIT BY CHEMOTHERAPY

Sparano JA et al. N Eng J Med 2018; 379(2):111-121

.....

Red Valenciana de **Biobancos**

MPD[©]

AMPK Pathway

Cardio Toxicity

EGFR / HER Pathway

MAP Kinase Pathway

■ PI3K / AKT Pathway

Stress Toxicity

DMPK

Hypoxia

Angiogenesis

Cell Cycle

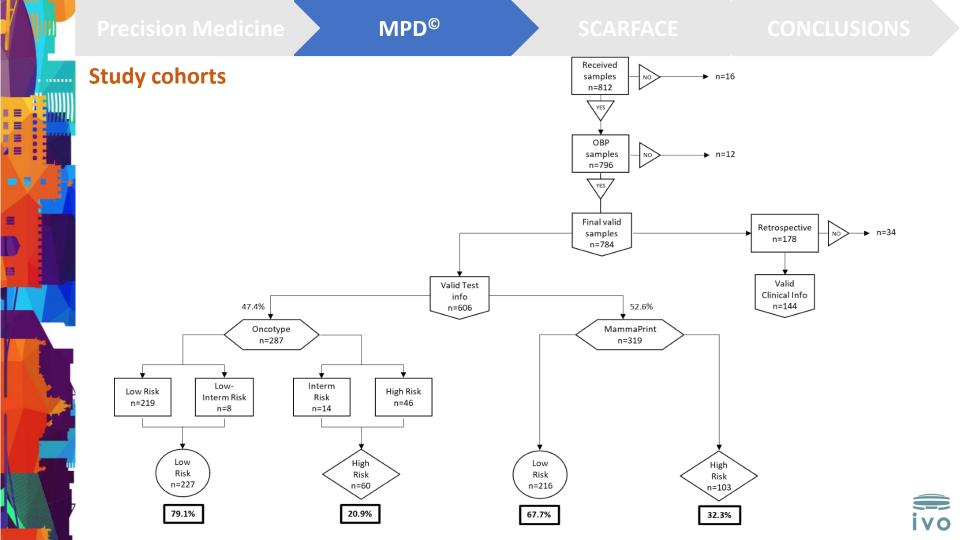
DNA Repair

FGFR Pathway

NFkB Pathway

Tissue Specific

10100


Receptors

Immuno Oncology

- Apoptosis
- Cluster of Differentiation
- EGF / PDGF Pathway
- Hedgehog Pathway
- JAK / STAT Pathway
- Other Genes of Interest
- Stem Cells
- WNT Pathway

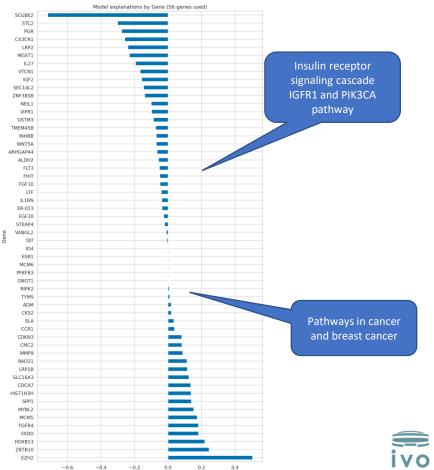
 $5\,\mu\text{m}\text{-thin}$ FFPE sections and 15 $\text{mm}^2\,\text{tumor}$ area

MPD[©]

SCARFACE

CONCLUSIONS

Analytical Validation


......

2 ≡

-

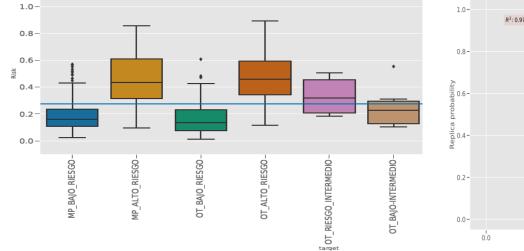
	aupr	balanced_accuracy
log_minmax_merge	• 0.731198	• 0.81354
log_minmax_mp	• 0.81749	• 0.80226
log_minmax_ot	• 0.79984	• 0.81354
log_wos_merge	• 0.79388	• 0.79705
log_wos_mp	• 0.8155	• 0.80010
log_wos_ot	• 0.75805	• 0.8072
rmbatch_minmax_merge	• 0.75051	• 0.76843
rmbatch_minmax_mp	• 0.74424	• 0.77306
rmbatch_minmax_ot	• 0.81429	• 0.82243
rmbatch_wos_merge	• 0.793832	• 0.78707
rmbatch_wos_mp	• 0.74945	• 0.77345
rmbatch_wos_ot	0.73119	0.81354

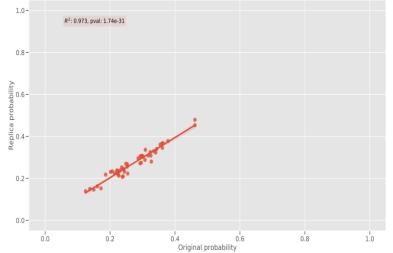
J Clin Oncol 39, 2021 (suppl 15; abstr 558)

Relevance (Normalized and Scaled units)

MPD[©]

SCARFACE


CONCLUSIONS


VO

Metrics

Ξ

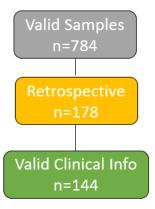
Balanced accuracy, 80.5%; Kappa, 0.562; Specificity, 80.7%; and NPV, 91.4%.

MPD[©]

SCARFACE

CONCLUSIONS

Clinical Validation


......

D

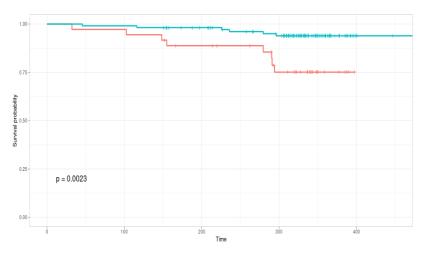
Retrospective validation

- n=144
- Prognosis
- Systemic relapse (15/129)
- More tan 10 years follow-up
- Early stages
- Luminal cases
- No tested with OT or MP

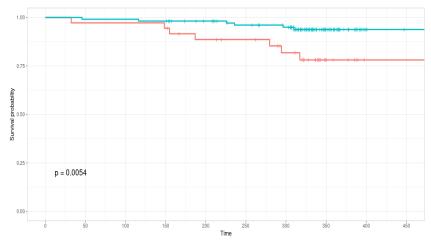
Parameters	Breast Cancer Patients
Age (years), n	144
mean (range)	62,91 (33-89)
cT (mm), n	141
T1	118 (83,6%)
T2	19 (13,4%)
T3	2 (1,4%)
T4 Unknown	1 (0,7%) 1 (0,7%)
cN, n	144
Negative	132 (891,6%)
Positive	11 (7,6%)
Hormonal Receptor status, n	143
Negative	1 (0,6%)
Positive	142 (99,3%)
cERB2, n	143
+ ++	102 (71,3%)
++	17 (11,8%) 11 (7,7 %)
Unknown	13 (9,1%)
Grade, n	102
1	43 (42,1%)
2	30 (29,4%)
3	5 (4,9%)
Unknown	24 (23,5%)
Follow-up (years), n	144
mean (range)	10,53 (3,100-23,10)
PFS (months), n mean (range)	144 311,98 (32,25 – 591,58)
MFS (months), n	144
mean (range)	314,42 (32,25 – 591,58)
OS (years), n	144
mean (range)	10,53 (3,13 - 23,07)
Relapse, n	144
Negative	138 (95,8%)
Positive	6 (4,2%)
Sistemic Relapse, n	144
Negative	129 (89,5%)
Positive	15 (10,5%)
Contralateral Breast Tumor, n Negative	144 139 (96,5%)
Positive	5 (3,5%)
Histology, n	94
IDC	65 (69,1%)
ILC	10 (10,6%)
Tubular	7 (7,4%)
Other	12 (12,7%)

MPD[©]

SCARFACE


vo

Clinical Validation

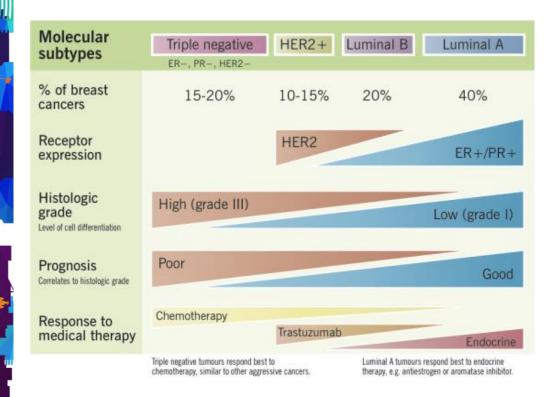

Local relapse

1

D

Systemic relapse

J Clin Oncol 39, 2021 (suppl 15; abstr 558)


.....

MPD[©]

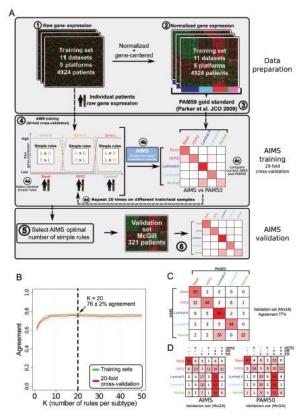
SCARFACE

CONCLUSIONS

Absolute Intrinsic Molecular Subtyping (AIMS)

- Why is importat a molecular classification?
 - Diagnosis
 - Prognosis
 - o Treatment
- PAM50 classifies BC in 5: Luminal A, Luminal B, Normal-Like, Her2 Enriched and Basal.
 - Nanostring nCounter
 - Closest distance of 50 gene expression
 - May be influenced by the cohort used

VO


MPD[©]

SCARFACE

CONCLUSIONS

Absolute Intrinsic Molecular Subtyping (AIMS)

- The AIMS algorithm is implemented in both the GeneFu and AIMS R packages available in Bioconductor.
- Redefine a stable single sample absolute version of PAM50
- It works by comparing the gene expression of 151 genes in a series of 100 binary rules.
- Less dependent on the technology platform used.
- Like PAM50, AIMS classifies the samples into the 5 intrinsic subtypes.
- Among the 151 analyzed genes 89 (58.9%) are represented in HTG OBP panel comprising 41 of 100 (41%) decision rules, which are still enough to reliable assign an intrinsic subtype to the breast cancer sample.

Ē

MPD[©]

A 11 4 O

SCARFACE

Absolute Intrinsic Molecular Subtyping (AIMS)

			AIMS	all genes vs AIMS HT	G genes		
Basal -	:	2 , 0.79 %	1 , 0.39 %	0,0%	0,0%	0,0%	
Her2 -		0,0%	10 , 3.94 %	0,0%	0,0%	0 , 0 %	Freq
- Amus - Amus		0,0%	0,0%	85 , 33.46 %	10 , 3.94 %	13 , 5.12 %	- 60
LumB -			Overall Statistics	0,0%	87 , 34.25 %	0,0%	0
Normal -		Accura Kap	-	4 , 1.57 %	0,0%	39 , 15.35 %	
		AccuracyLo AccuracyUp AccuracyV	wer 0.83 per 0.92	LumA Prediction	LumB	Normal	
		AccuracyPVa McnemarPVa	lue 0				

Confusion Matrix and Statistics

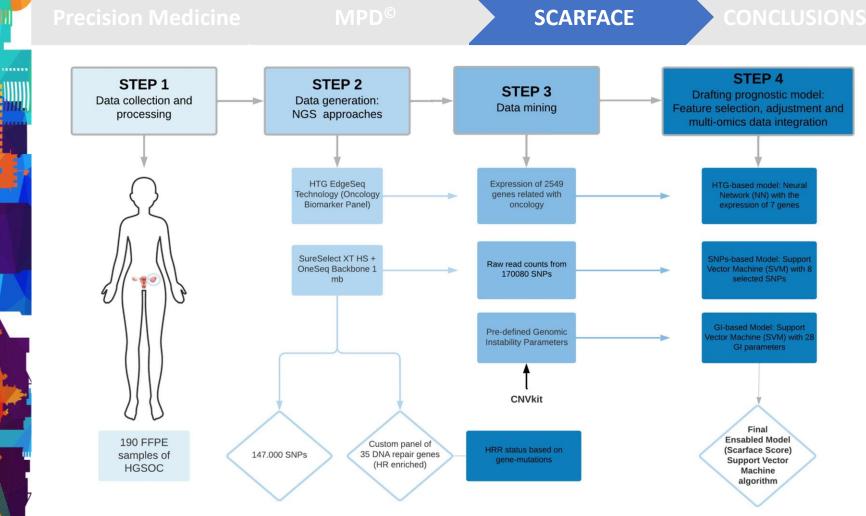
- 80 - 60 - 40 - 20

VO

MPD[©]

SCARFACE

CONCLUSIONS


Predictive-Response Model to DNA-damaging agents based on genomic scars

SCARFACE

Grupo Español de Investigación en Cáncer de Ovario


ivo

MPD[©]

SCARFACE

CONCLUSIONS

Distribution of genetic alterations of DNA repair genes

ivo

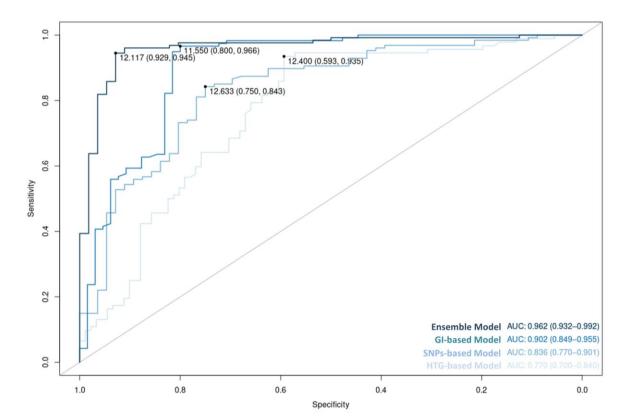
Wildtype Mutated nonHRD HRD Amplificated

......

MPD[©]

SCARFACE

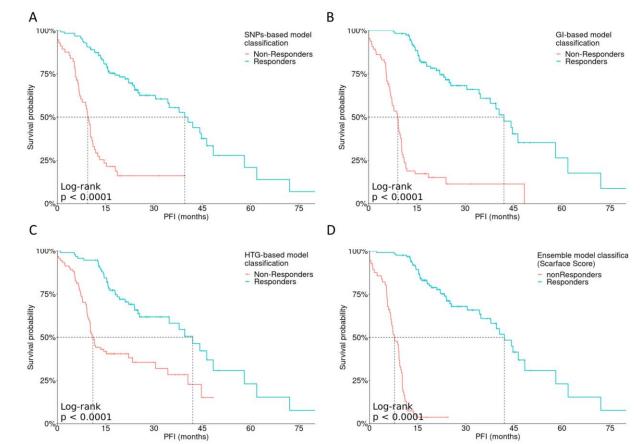
CONCLUSIONS


Distribution of genetic alterations of DNA repair genes

	Accuracy (95 % Cl)	Sensitivity; Specificity	Карра
SNPs Model	0.8077 (0.6747-0.9037)	0.7222; 0.8529	0.5752
GI Model	0.8077 (0.6747-0.9037)	0.9444; 0.7353	0.6154
HTG Model	0.8909 (0.7775-0.9589)	0.8750; 0.8974	0.7450
Ensemble Model	0.9615 (0.8679-0.9953)	0.8889; 1.0000	0.9128

MPD[©]

ROC curves for different predictive models (PFI 12 months)



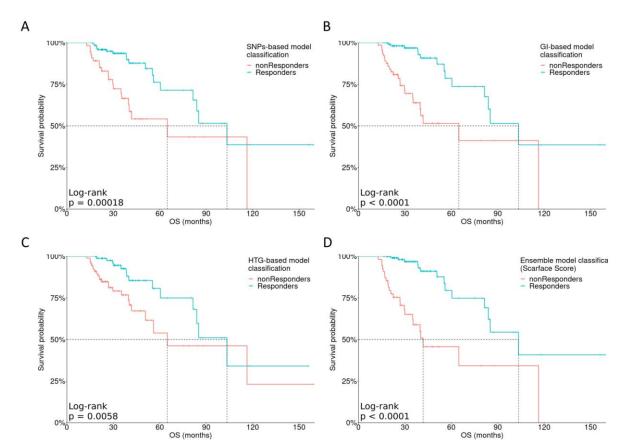
=

MPD[©]

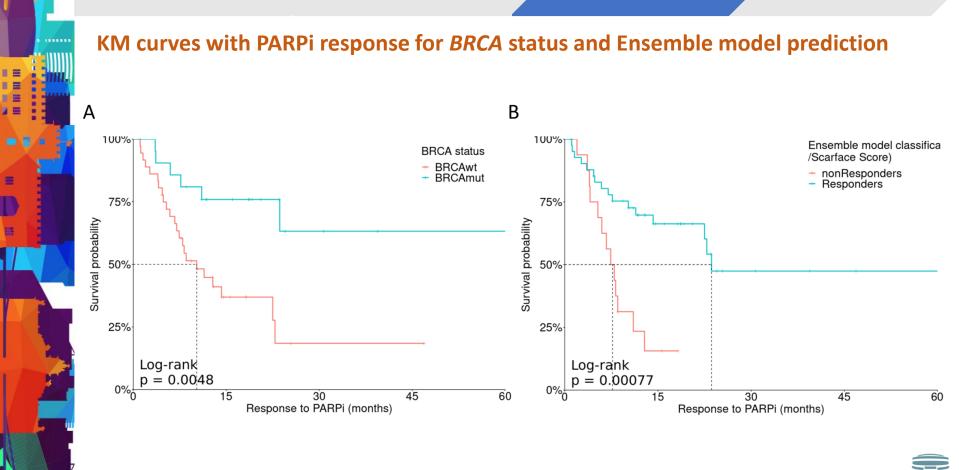
CONCLUSIONS

KM curves for Platinum-Free Interval (PFI) of the different predictive models

ivo


=

MPD[©]


CONCLUSIONS

vo

KM curves for Overall Survival (OS) for different predictive models

VO

• Data annotation is crucial for a successful precision medicine using AI tools.

- Al tools from tumor profiling are very useful to answer specific clinical questions.
- MPD and AIMS algorithms from HTG BC profiles provides a very accurate recurrence-risk and molecular subtyping classification.
- SCARFACE score identifies ovarian cancer patients that may benefit from platinum-based and PARPi therapies.

CONCLUSIONS

Acknowledgements

.....

Zaida García-Casado Antonio Fernández Serra

Reyes Claramunt Alonso María García-Flores Tania Mazcuñán Vitiello Patricia Carretero Hinojosa

Marta Ramírez Calvo

Isabel Cortell Granero Marina Luque Martínez Nuria López Pérez-Madero Zoraida Martínez Andreu **Raquel López-Reig**

Belén Pastor Navarro David Millán

Departmen of Pathology

Ana Calatrava Fons Jessica Aliaga

Department of Medical Oncology

- I. Romero
- A. Guerrero-Zotano

Grupo Español de Investigación en Cáncer de Ovario

Reial Acadèmia de Medicina de la Comunitat Valenciana

Fundación Progreso y Salud CONSEJERÍA DE SALUD

VERALITAT

SEC

Sociedad Española de Oncología Médica

TG

